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Abstract. Numerical simulations on the total mass, the numbers of bonds on the hull, external perimeter,
singly connected bonds and gates into large fjords of the Fortuin-Kasteleyn clusters for two-dimensional
q-state Potts models at criticality are presented. The data are found consistent with the recently derived
corrections-to-scaling theory. A new method for thermalization of spin systems is presented. The method
allows a speed up of an order of magnetization for large lattices. We also show snapshots of the Potts
clusters for different values of q, which clearly illustrate the fact that the clusters become more compact
as q increases, and that this affects the fractal dimensions in a monotonic way. However, the approach to
the asymptotic region is slow, and the present range of the data does not allow a unique identification of
the exact correction exponents.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.45.Df Fractals – 75.10.-b General
theory and models of magnetic ordering – 75.40.Cx Static properties (order parameter, static susceptibility,
heat capacities, critical exponents, etc.)

1 Introduction

q-state Potts models have played an important role in con-
densed matter physics [1]. Here we study geometrical as-
pects of the critical Potts clusters, in two dimensions. The
q-state Potts model [2] is defined through the Hamiltonian

H = −K
∑
〈i,j〉

(δσi,σj − 1), (1)

where 〈i, j〉 denotes the summation over nearest neighbor
sites i, j, the spin variable σi can take any of the val-
ues 1, 2, . . . , q and K is the thermal coupling with the
factor 1/kBT absorbed in it. It is possible to extend q
to real values [1], but here we concentrate on the Potts
model with integer values of q. In particular, we study
Potts models with q = 1, 2, 3, and 4, where the ther-
mal phase transition at the critical inverse temperature
Kc = ln (1 +

√
q) [1] is of second order. Below we present

simulations at K = Kc.
One defines the fractal clusters in the Potts model

through the Fortuin-Kasteleyn (FK) [3] cluster decompo-
sition, which states that the model can be mapped onto a
general percolation model. The partition function of the
Potts model Z = Trσe

H can be expressed in terms of
bond variables as Z = Trbondsp

b(1 − p)nqNc , where b is
the number of bonds and n is the number of interac-
tions that did not form a bond in a configuration with
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Nc clusters [4]. Here, p = 1 − e−K , and Trbonds means a
summation over bonds. Thus, the problem of a thermal
lattice model can be mapped to a graph problem. The
FK decomposition has been the starting point for efficient
cluster algorithms [4,5] for simulation of spin models.

The Potts model has been shown to exhibit a rich
critical behavior, and it has been related to a number of
problems in lattice statistics [1]. Although of great the-
oretical interest in itself, it also has many experimental
realizations. The 1-state Potts model is equivalent to a
bond percolation problem [1], and the 2-state Potts model
is the same as the Ising model [6]. The q = 3 Potts
model has been shown to describe absorbed monolayers
on two-dimensional (2D) lattices [7,8]. Domany et al. [9]
suggested that N2 absorbed on krypton-plated graphite
should exhibit the same critical behavior as the q = 4
Potts model. More references on the experimental realiza-
tions can be found in the review article by Wu [1].

In this work we study geometrical aspects of the crit-
ical Potts clusters in two dimensions. This is in direct
analogy with the geometry of percolation clusters, which
has been widely studied [10–18]. Specifically, we measure
the fractal dimensions DM , DH , DEP , DSC , and DG

describing the scaling of the cluster’s mass, hull, exter-
nal accessible perimeter, singly connected bonds and the
gates to narrow-gate fjords, respectively, with its radius of
gyration R.

In the case of percolation, DSC was first discussed by
Coniglio [11,12], and measured by Pike and Stanley [13].
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Table 1. Exact theoretical predictions. Superscripts refer
to following articles: a Saleur and Duplantier [19], b Du-
plantier [20], c Cardy et al. [23], d den Nijs [26], e Aharony
and Asikainen [21].

DS q = 1 q = 2 q = 3 q = 4 cS/a

g
8

3
3

10

3
4

Ma (g + 2)(g + 6)/(8g)
91

48

15

8

28

15

15

8

1

16

Ha 1 + 2/g
7

4

5

3

8

5

3

2
−1

4

EPb 1 + g/8
4

3

11

8

17

12

3

2

1

4

SCa (3g + 4)(4 − g)/(8g) 3
4

13
24

7

20
0 −1

θc 4(4 − g)/g 2
4

3

4

5
0 (log)

θ′d 4/g
3

2

4

3

6

5
1

θ′′e 2/g
3

4

2

3

3

5

1

2

DH was defined by Mandelbrot [14] and first measured by
Voss [15], while theoretical arguments were proposed by
Bunde and Gouyet [16]. DEP was invented and measured
by Grossman and Aharony [17]. The quantityDG has only
been discussed theoretically by Aizenman et al. [18].

In the case of the Potts model for general values of
q, analytical expressions for the exponents DM , DH and
DSC were given by Saleur and Duplantier [19]. Finally, the
analytical form of the exponents DEP was given by Du-
plantier [20]. The available theoretical values of the expo-
nents are summarized in Table 1, in terms of the Coulomb
gas coupling constant

g =
4
π

arccos
(
−
√
q

2

)
· (2)

Although there exists much numerical work on the per-
colation clusters (i.e. q = 1), we are not aware of any
detailed numerical study of most of the above mentioned
quantities for q > 1, and especially when q approaches the
critical value qc = 4.

Section 2 describes the numerical methods used in the
simulation of the Potts models. We also introduce a new
method for thermalization of the spin lattices. Our nu-
merical simulations show that the asymptotic power law
dependence of the various masses on R is approached rel-
atively slowly, and therefore the analysis of the data must
include correction terms, particularly as q approaches qc.
The theory developed to obtain these correction terms [21]
is briefly summarized in Section 3. We compare our numer-
ical data with the exact predictions in Section 4. Finally,
we present the summary and conclusions in Section 5.

2 Simulation

Numerical simulations of spin models have developed from
the local spin flip type algorithm [22] to the more advanced
cluster algorithms [4,5]. Our simulations were done on a
2D square lattice with both open and periodic boundary
conditions. Clusters of the q-state Potts model were gen-
erated using the Swendsen-Wang algorithm [4], which is
based on the cluster decomposition by Fortuin and Kaste-
leyn [3]. The size of the system in our simulations was
40962 spins for all q. Figure 1 shows sample clusters for
different values of q.

Figure 1 already gives a qualitative summary of our
results. Just by looking at this figure, one can see the
monotonic variation of the shapes of the clusters with q:
as q increases, there are less singly connected sites, and
the external boundary of the cluster becomes smoother.
All of these qualitative features are consistent with the
theoretical predictions in Table 1.

All simulations were started with a homogeneous ini-
tial condition, with all spins initially parallel to each
other. First we thermalized the system to allow the model
to equilibrate. Thermalization was checked by measuring
both the energy per spin e, directly from the Potts Hamil-
tonian, and the magnetization per spin m, using the rep-
resentation of Potts spins in a q−1 dimensional space [1].

Thermalization of large spin systems takes a very long
time. The quantities of interest in this work show a rela-
tively slow approach to the asymptotic values. Thus, ex-
tremely large lattices are required for the analysis of the
scaling behavior of the cluster subset masses. When per-
forming simulations on lattices of linear size L = 212 =
4096, about 20 000 Monte Carlo steps (lattice sweeps) are
needed to equilibrate the system.

We devised a simple method to overcome the problem
with long thermalization times. We started the thermal-
ization with a small lattice of size L1 and thermalized
it. We then periodically copied the spin configuration of
the small lattice to a lattice with twice as large a size,
L2 = 2 × L1, and thermalized it. We continued this pro-
cess until the desired system size was reached. In prac-
tice, it is recommended to compare the values of e and
m obtained this way with the values obtained from con-
ventional thermalization to be sure that the system is re-
ally thermalized. Alternatively, one can continue running
the simulation and collect the values of thermodynami-
cal variables as a function of time and check that there
is no increasing or decreasing trend in them. The ther-
malization method described above allows a speed-up by
an order of magnitude in thermalization for a Potts spin
system of 10242 spins. This thermalization method is one
of the new elements in the present paper.

After the spin system was thermalized, we took sam-
ples of the cluster configurations after every 20 spin up-
dates (corresponding roughly to the correlation time for
the present system sizes) to get uncorrelated samples.
Each cluster of the present configuration was taken sep-
arately under investigation. However, as a precaution to
avoid some of the finite size effects, we collected the data
only from those clusters which did not involve spins on
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Fig. 1. Computer generated Potts clusters for (a) q = 1, (b) q = 2, (c) q = 3 and (d) q = 4 state Potts models. Colors indicate
different subsets: SC bonds are shown in red, H bonds are shown in yellow and the rest of the bonds contributing to M are
shown in blue. The EP bonds are colored green and the gates to fjords are marked by black circles, while the fjord is shown
with a black line. For all the clusters, the total masses MM are in the range 14400 − 17600. Note the decrease of DH with q.

the boundary. For the remaining clusters we determined
the masses of the cluster subsets. The total mass of the
cluster is defined as the number of occupied bonds in the
cluster. The number of bonds belonging to the hull, exter-
nal perimeter and the number of singly connected bonds
were counted using directed walkers that walk on the ap-
propriate cluster perimeter [10,17].

To measure the number of gates to fjords of different
gate sizes (SG) a walk was initiated on the EP. The walker
starts from the left vacant neighbor of the lower-left site
belonging to the cluster and goes around the cluster on the
EP always trying to turn to the right. At each site, we look
at the neighbors on the left hand side and check whether

the sites within a predefined distance SG belong to the EP
or not. If the sites (and bonds) up to the distance SG are
not EP sites and the site at the distance SG belongs to the
EP, the walker is about to enter a fjord with a gate size
SG. All fjords with different gate sizes were counted during
a single walk around the cluster with an array of boolean
variables that indicate whether the walker is within a fjord
of given size. If the walker was in a fjord of a gate size
SG, fjords with gate size S′

G > SG were not allowed in
the statistics. In practice, all measured values of SG gave
similar results, and we report only the results for SG = 1.

As noted by Aizenman et al. [18], the scaling con-
cerns fjords whose size LF is comparable to that of the
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cluster, R, and whose gate’s width is much smaller than
LF . The reason for this is easy to understand, since small
kinks and pits are a natural part of the fractal cluster’s
perimeter. Thus, only large enough fjords were included in
the statistics. This was taken into account by choosing a
suitable parameter s ∈ [0.1, 0.2], and counting only fjords
with LF > sR.

Since any thermalized spin configuration contains clus-
ters of many sizes, we collected the data in multiplicatively
increasing bins of the size of the cluster. Each bin con-
tained the clusters of sizes within [Ri, Ri+1 =

√
2 Ri].

3 Corrections to scaling

In our recent publication [21], we derived theoretically the
corrections-to-scaling terms for the various cluster subset
masses. The corrections arise from three different sources:
(a) using the renormalization group approach, (b) map-
ping to the coulomb gas, and (c) considering the uncer-
tainty of the correct measure for the linear cluster size,
which implies corrections of the order of 1/R.

The first correction relates to the dilution field ψ,
which is generated under renormalization even when one
starts with the non-diluted case [23]. Solving the renor-
malization group recursion relations (RGRR’s) for ψ(�),
where � is the scale variable, substituting the solution
to the RGRR’s for the field hS conjugate to the density
ρS = MS/R

d and finally calculating the scaling of the
density ρS(�) with the cluster’s linear size R = e� yields
the following predictions for the approach of each mass
MS to the asymptotics. Here, S = M, H, EP or SC.

In the q = 4 case, the renormalization group cal-
culation is exact, yielding logarithmic corrections to the
scaling of MS(R):

MS ∝ RDS (logR +B log(logR) + E)−cS/a

× (1 + O(log logR/ logR)) , (3)

with DS = yS(q = 4) and cS/a as given in Table 1 (see
below). Note that B is universal, and the non-universal
constant E is the same for all S. Equation (3) generalizes
the logarithmic corrections of Cardy et al. [23].

We were recently directed to a previous study by
Vanderzande and Marko [24], in which they considered
corrections to scaling for magnetic and percolative sus-
ceptibilities in the q = 4 Potts model. They construct
RGRR’s from which the logarithmic corrections to the
cluster’s total mass could be obtained, in agreement with
our analytical calculations [21].

For q < 4, to leading order in ε′ =
√

4 − q, the same
procedure yields

MS ∝ RDS

(
1 − B̂R−θ

)−cS/a

≈ RDS
(
1 + fSR

−θ
)
, (4)

whereDS ≈ yS−cSε′ and θ ≈ 2aε′. Note that to the lowest
order in ε′, the ratios fS/fS′ are universal, being equal to

cS/cS′ . This is similar to analogous ratios for thermody-
namic properties in the usual ε-expansion [25]. This uni-
versality should hold to all orders in ε′. Expanding the ex-
act DS (Tab. 1) in ε′ yields cS . Using also a = 1/π [21,23]
yields our predictions for cS/a (given in Tab. 1), to be
used in the fitting procedure.

The second source of corrections involves new contri-
butions to the relevant pair correlation functions in the
Coulomb gas representations. Den Nijs [26] derived such
corrections to the order parameter correlation function.
Since correlation exponents x are related to the fractal
dimension via D = d − x, the correction exponents can
be related to the corresponding correction terms for the
scaling of the mass MM , yielding the leading correction

θ′ = 4/g, (5)

where g is the (q-dependent) Coulomb Gas coupling con-
stant (see Eq. (2) and Tab. 1).

Using a similar approach we found in the case of the
hull and the singly connected bonds that the leading cor-
rection exponent is given by

θ′′ = 2/g. (6)

We argued that this correction would also hold for the
external perimeter [21].

The last source of corrections involves ‘analytic’ terms,
coming e.g. from linear cuts with dimensions (DS−1), [27]
or from replacing R by (R + A), since there are many
possible candidates for the correct linear measure of the
cluster. These would imply corrections of relative size 1/R.

4 Results

We now present the numerical data from large scale Monte
Carlo simulations of the Potts models. Our aim is to con-
firm the exact predictions of the fractal dimensions DS in
the cases where they are available and to give numerical
estimates for the exponents that have not yet been calcu-
lated exactly. In addition, we want to numerically confirm
the corrections-to-scaling theory presented in the previous
section.

We obtain good agreement with the theoretically pre-
dicted values for most of the fractal dimensions DS . The
worst agreement is found for the exponent of the external
perimeter DEP for q > 2 Potts models. The reasons for
this will be discussed below. However, fixing the correction
terms and performing fits only to the amplitudes and to
the fractal dimensions DS in the logarithmic derivatives
of equations (3) and (4), yielded estimates for the subset
fractal dimensions that agree to the precision of 0.05 or
better with the theoretical predictions of Table 1.

As we discuss below, our data are consistent with the
theoretical predictions for both the leading and correc-
tion exponents; when we fix these exponents, we get very
good fits. Attempts to fit without the corrections give bad
values for the leading exponents. However, the range of
available cluster sizes is not sufficient to allow a general
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Fig. 2. Site percolation model. The number of the singly con-
nected bonds MSC(R) vs. the cluster linear size R. The pre-
dicted slope DSC = 3/4 is indicated by the solid line. The inset
shows the scaled mass MSC(R)/RDSC . Note the saturation to
the asymptotic scaling at R ≈ 300.

search for the correction exponents. Therefore, these expo-
nents (θ, θ′ (or θ”) and cS/a) were fixed in our fits at their
theoretical values, and the fits varied only the respective
amplitudes. Thus, we have shown consistency with theory,
but we have not proven that this theory uniquely describes
the data.

We start this section by studying the fractal geometry
of clusters in the site percolation model, which is com-
putationally easier to simulate. The reasons behind the
difficulties in the comparison of the numerical data with
the analytical predictions are discussed. We then proceed
to present our numerical data on the Potts clusters. In all
the figures of this section, whenever the error bars are not
shown they are smaller than the size of the symbols.

4.1 Site percolation clusters

For q = 1 we simulated site percolation on a square lattice
of size 245762, using the Newman-Ziff cluster labeling [28]
which is an improved version of the Hoshen-Kopelman
algorithm [29]. Thus the linear lattice size was 6 times
larger than in the simulation of Potts clusters with q ≥ 1.

To get a feeling of what kind of problems are present
in the fitting procedure when the theoretically predicted
correction terms of equations (3) and (4) are fitted to the
numerical data on the cluster subset masses MS(R), let
us consider as an example the scaling of the number of
singly connected bonds. Figure 2 illustrates the scaling of
MSC(R) with the cluster size R on a double logarithmic
scale. The solid line in the main figure indicates the pre-
dicted slope. The linear fit to the data on log-log scale
yields an estimate for the asymptotic fractal dimension
DS which is less than 0.01 off the exactly known value
DSC = 3/4.

Although the asymptotic scaling regime MSC(R) ∝
RDSC can be seen here, there are difficulties in the
extraction of the correction terms of equation (4). The

smallest value of R included in the linear fit to the data on
log− log scale in Figure 2 corresponds to the regime where
the influence of the correction terms are about to vanish,
thus justifying fitting without any correction terms. The
saturation to the asymptotics can be seen more clearly
in the inset of Figure 2 where data are scaled with the
predicted asymptotic behavior MSC(R)/RDSC . The inset
shows that at about R ≈ 300 the correction terms can
be neglected in this case. However, at the same point the
statistics becomes so noisy, making a precise estimation
of the correction terms difficult. An additional difficulty
arises from the fact that the finite size of the lattice is
not taken into account in any way in the finite size scaling
form of equation (4). Due to the finite system sizes, statis-
tics of the large cluster is biased in such a way that only
the compact clusters fit in the lattice without touching
the boundaries. The extended clusters having for example
more EP sites than compact clusters with the same ra-
dius of gyration R, are absent. This bias cannot be taken
into account by any known correction terms. We tried to
extrapolate the data from different system sizes to obtain
an asymptotic curve for an infinitely large system, but the
statistics is far from sufficient for such a procedure.

4.2 Potts clusters

In the case of Potts clusters, system sizes that can be
used in the simulations are much smaller than those in
the site percolation case, since in addition to the spin vari-
ables, also bonds must be stored in the computer memory.
This causes the finite size effects to be even more pro-
nounced than those present in the site percolation model
simulations. In addition, the correction exponents in the
1 < q < 4 Potts models are smaller than those in the
q = 1 case. Also, the logarithmic corrections present in
the 4-state Potts model are weaker than any of the power
law corrections in q < 4 models. Thus, the influence of the
corrections-to-scaling terms extends to much larger values
of R.

The data analysis was done by fitting the theoretical
predictions of Section 3 to the data. The nonlinear fitting
was done using the Levenberg-Marquardt method [30].
The measure for the quality of fits is χ2. Values of χ2

close to one indicate a good fit.
We found that for q < 4, fitting directly to the mass

gave better fits (in terms of χ2). Thus, for illustrational
purposes in the q < 4 case, we show below some fits done
directly to the mass

MS/R
DS = ES(1 + fSR

−θ + f ′
SR

−θ′
+ gS/R), (7)

where ES , fS , f
′
S , gS are fitting amplitudes, while θ and θ′

and DS come from theory.
To get the numerical estimate for the fractal dimen-

sions, we perform fits to the logarithmic derivative of
equation (7):

Deff
S (R) = DS + fSR

−θ + f ′
SR

−θ′
+ gS/R, (8)
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with parameters similarly as in (7).
In the q = 4 case, the fits were done to

Deff
S (R) = d logMS/d logR

≈ DS − (cS/a)(B + C + logR)
(C + logR)(E + logR+B log(C + logR))

+ Z/ logR. (9)

Note that we have replaced the log logR term in equa-
tion (3) by the more general log(C+logR). Also, the log-
arithmic derivative of the higher order term on the RHS of
equation (3) was approximated by a simpler form 1/ logR.
In the fitting procedure, the possibility of having many
candidates for the correct linear measure of the cluster size
was taken into account by allowing R to adjust to R +A
(see Sect. 3). When fitting to equation (3), only the param-
eter cS/a is fixed, while the rest (DS , A, B, C, E and Z)
are allowed to fit.

Below, the results of our numerics are summarized for
the various subsets. We do not go into the details of nu-
merical estimates for the various amplitudes in the non-
linear fits, since due to the relatively small range of the
data and many fitting parameters the estimated error bars
are large, and allow no comparison with, for example, the
predicted amplitude ratios. Also, precise estimation of the
correction exponents θ, θ′ (or θ′′) as well as the parame-
ters cS/a is impossible with the presently available range
of data.

Instead, we keep the correction exponents (or param-
eters) fixed and try to extrapolate the fractal dimensions
DS , and to demonstrate that the predicted forms of scal-
ing in equations (7) and (9) are consistent with our nu-
merical data. Specifically, for q < 4, in fits to equation (8)
θ and θ′ (or θ′′) were kept fixed at the predicted values.
In the q = 4 case, only cS/a was fixed in equation (9).
Although there are many fitting parameters as compared
to the available range of data, we would like to point out
that the fits are rather stable. We checked confidence levels
on our estimates to the fractal dimensions DS by Monte
Carlo sampling of the original data within the error bars
of each data point (see e.g. Chapter 15.6 in [30]). Figure 3
illustrates a confidence level of 99%.

We also estimated the error bars of the fractal dimen-
sions DS in the following way. First, the numerical esti-
mate forDS was obtained from the nonlinear fitting proce-
dure with the exactly known correction parameters fixed.
Second, the range within which χ2 did not change more
than ∆χ2 = 1 was determined by fixing DS to values in
the neighborhood of the original estimate and allowing the
other parameters to fit. We feel that it is important to in-
clude also this latter analysis in the error bar estimation
process, as fixing DS beyond the range deduced from the
confidence level analysis still yields fits with a good value
of χ2.

The logarithmic corrections are most important for the
singly connected bonds at q = 4, where theory predicts
that DSC = 0 (see Tab. 1). Indeed, the solid line in Fig-
ure 4 shows that a fit to equation (9) isconsistent with
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the logarithmic form of equation (9). Note the difference in
the extrapolation to the R → ∞ where the fits give DSC =
0.21 ± 0.01 with a single power law correction term whereas
DSC = 0.03 ± 0.08 with the logarithmic form.

this theoretical prediction. In contrast, a fit with a single
power law correction term θ = 1/2 (dashed line in Fig. 4)
extrapolates to a wrong value near DSC = 0.21!

4.2.1 Mass

Figure 5 shows an example of the fit to the curve MM (q =
3)/RDM . The value χ2 = 1.17 indicates that equation (7)
gives a good representation of the data. Our numerical
estimates for the fractal dimensions DM (q), determined
as the range of values for which one has χ2 < 2, are
1.90 ± 0.01, 1.87 ± 0.01, 1.85 ± 0.02 and 2.05 ± 0.15 for
q = 1, 2, 3, 4, respectively. These are in good agreement
with the theoretical predictions.
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4.2.2 Hull

Figure 6 shows a fit to the number of the bonds belonging
to the hull in the q = 4 Potts model. The value of χ2 =
1.11 indicates that equation (9) fits the data well. Our
numerical estimates for the fractal dimensions DH(q) are
1.75 ± 0.01, 1.66 ± 0.01, 1.59 ± 0.03 and 1.50 ± 0.01, for
q = 1, 2, 3, 4, respectively. Agreement with the theoretical
predictions is excellent as can be seen by comparison with
the values in Table 1.

4.2.3 External perimeter

Figure 7 shows an example of the fit to the external
perimeter data in the q = 2 Potts model. This fit yields
χ2 = 1.77, implying a reasonably good agreement with
equation (7). Again, in the fits for q < 4, θ and θ′′ of
equation (7) were kept fixed and in the q = 4 case, cEP /a
was fixed. The numerical estimates 1.33±0.05, 1.36±0.02,
1.40 ± 0.02 and 1.48 ± 0.02 for q = 1, 2, 3, 4, respectively,
agree with the exact predictions.
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Fig. 7. Number of the external perimeter bonds, MEP versus
1/R in the q = 2 Potts model. Solid line indicates the fit to
the data (χ2 = 1.77).
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Fig. 8. Number of the singly connected bonds MSC against
1/R in the q = 2 Potts model. Solid line is the nonlinear fit for
which χ2 = 1.21.

4.2.4 Singly connected bonds

In Figure 8, we show the number of singly connected bonds
MSC(R)/RDSC against the cluster size R in the q = 2
Potts model. The value χ2 = 1.21 implies good agreement
with equation (7). The numerical estimates for the frac-
tal dimensions are 0.75 ± 0.02, 0.55 ± 0.03, 0.35 ± 0.07,
and 0.03 ± 0.08, for q = 1, 2, 3, 4, respectively. All the es-
timates for the fractal dimensions DSC are in good agree-
ment with the theoretical predictions. However, the large
value of χ2 ≈ 3 in the q = 4 case indicates some discrep-
ancy between equation (9) and the data.

4.2.5 Gates to fjords

Figure 9 shows our numerical data for the number of gates
to narrow-gate fjords. The figure shows fits to the data
along with the estimates for the fractal dimensions DG.
Our estimate DG(q = 1) = −0.9 ± .05 agrees with the
exact prediction DG = −11/12 ≈ −0.92 [18]. Here, only
a linear fit to the data on the double logarithmic scale
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Fig. 9. Data for MG(R), the number of gates to fjords on log-
log scale. Different values of q are represented by the symbols
shown in the legends. Straight lines indicate the fits to the
data; slopes give the exponents DG.

Table 2. Comparison of the numerical estimates (n) for the
subset fractal dimensions DS with the exact predictions (e)
where available. Uncertainties of the last decimal(s) for each
DS are given in parenthesis.

S DS(q = 1) DS(q = 2) DS(q = 3) DS(q = 4)

n e n e n e n e

M 1.90(1)
91

48
1.87(1)

15

8
1.85(2)

28

15
2.05(15)

15

8

H 1.75(1)
7

4
1.66(1)

5

3
1.59(3)

8

5
1.50(1)

3

2

EP 1.33(5)
4

3
1.36(2)

11

8
1.40(2)

17

12
1.48(2)

3

2

SC 0.75(2)
3

4
0.55(3)

13

24
0.35(7)

7

20
0.03(8) 0

G −0.90(5) −11

12
−0.71(5) - −0.63(5) - −0.59(5) -

was considered, since the scaling regime for the presently
available cluster sizes is rather narrow. The parameter s
governing the minimal ratio of the fjord size to the clus-
ter size that we used was in the range 0.1 ≤ s ≤ 0.2.
The actual choice for the value of s does not affect the
scaling law, but it merely determines the range where the
power law behavior MG ∼ RDG starts (decreasing s shifts
the maximum of the curves MG(R) to the left). Our nu-
merical estimates for |DG(q)| decrease with increasing q.
Our estimates for DG(q) are −0.90 ± 0.05, −0.71 ± 0.05,
−0.63±0.05 and −0.59±0.05 for q = 1, 2, 3, 4, respectively.
Our numerical estimates together with the theoretical pre-
dictions for all fractal dimensions DS are summarized in
Table 2.

5 Conclusions

The present paper examined the fractal geometry of the
Potts clusters at the critical temperature. The aim was
to find numerical evidence for the exactly derived subset
fractal dimensions DS [18–20,31] and to give estimates
on the dimensions for which there is no exact prediction.
We gave the first numerical estimate of the negative frac-
tal dimensions DG, describing the scaling of the gates to
fjords [18].

Analysis of our numerical data revealed a slow and
complex approach to the asymptotic behavior. If this is
neglected in data analysis, wrong numerical estimates for
the dimensionsDS follow. Using the corrections-to-scaling
terms derived in our earlier publication [21] in the fitting
procedure, excellent agreement with most of the exact di-
mensions and data was found. The present quality and
range of data does not allow a unique quantitative confir-
mation of the exact correction parameters.

We devised a simple and fast method for thermaliza-
tion of large spin systems. The method is based on first
thermalizing a small sublattice of size L1, copying it to a
larger sublattice of size L2 = 2L1, and the thermalizing
thermalizing the larger lattice. The process is continued
until the wanted system size is reached.

We also showed snapshots of the numerically gener-
ated Potts clusters for all values of q considered in this
paper. The figures already show the qualitative summary
of our results, namely the monotonic behavior of the sub-
set masses with increasing values of q.

To summarize, in the comparison between theory and
numerics, extreme caution is needed in the extraction
of the fractal dimensions DS from the numerical data.
The corrections-to-scaling theory presented already im-
plies that the finite size effects arising from the finite clus-
ter size are strong. In addition, effects coming from the
finite lattice size lead to an uncontrollable bias that is
very difficult to handle.
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